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ABSTRACT
Stereotactic body radiation therapy (SBRT) is a highly effective treatment for lung cancer; however, challenges arise from tumor 
motion induced by respiration. The CyberKnife system, incorporating both fiducial-based and fiducial-free tracking modalities, 
aims to mitigate these challenges, yet tumor recognition can be compromised by overlapping bone structures. This study in-
troduces a novel bone suppression imaging technique for kilovolt X-ray imaging using generative adversarial networks (GANs) 
to enhance tumor tracking in SBRT by reducing interference from bony structures. Computed tomography (CT) images, both 
with and without bone structures, were generated using a four-dimensional extended cardiac-torso phantom (XCAT phantom) 
across 56 cases. X-ray projections were captured from left and right oblique 45° angles and divided into nine segments, produc-
ing 1120 images. These images were processed through six pre-trained GAN models—CycleGAN, DualGAN, CUT, FastCUT, 
DCLGAN, and SimDCL—yielding bone-suppressed images on the XCAT phantom (BSIphantom). The resulting images were eval-
uated against bone-shadow-free images using structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), 
and Frechet inception distance (FID). Additionally, bone-suppressed images (BSIpatient) were derived from 1000 non-simulated 
patient images. BSIphantom images achieved SSIM and PSNR values of 0.96 ± 0.02 and 36.93 ± 3.93, respectively. SimDCL exhib-
ited optimal performance with an FID score of 68.93, indicative of superior image generation quality. This GAN-based bone sup-
pression imaging technique markedly improved image recognition and refined dynamic tumor tracking, enhancing the accuracy 
and efficacy of SBRT.

1   |   Introduction

Stereotactic body radiation therapy (SBRT) is widely used for 
lung cancer treatment, showing good outcomes [1]. SBRT com-
bines multidirectional, precise irradiation to improve local 
tumor control and reduce adverse events in nearby normal 
tissue. One challenge is tumor movement due to respiration. 
Various countermeasures have been developed to administer 
precise doses and minimize impact on normal tissue [2, 3].

The CyberKnife (CK) system (G4, version 10.5, Accuray Inc.) 
integrates a robotic-positioned linear accelerator, an image-
guided system, and respiratory tracking systems. CK has 
two respiratory tracking systems: the fiducial-based target 
tracking system (FTTS) and the Xsight lung tracking system 
(XLTS) [4]. XLTS, a fiducial-free real-time tracking system, 
is used to irradiate lung tumors that move with respiration 
[5]. Retrospective studies show good 5-year local control and 
overall survival, 91% and 75%, respectively [6, 7]. The target 
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locating system (TLS) uses orthogonal X-ray imagers to track 
moving targets by modeling the correlation between targets 
and external LED markers on the patient's chest [8]. This sys-
tem tracks the treatment area in real-time with irradiation 
error under 1 mm [9, 10]. While systems like Varian TrueBeam 
and Elekta Agility offer advanced image-guided and motion 
management technologies, CK excels with its fiducial-free 
real-time tracking [11, 12].

Generally, XLTS aligns live X-rays with their corresponding 
digitally reconstructed radiography (DRR) by utilizing pixel 
intensities derived exclusively from the tumor and its sur-
rounding soft tissues. Tumors that are smaller or obscured 
by dense anatomical structures (such as the mediastinum, 
heart, rib cage, or spine) cannot be consistently detected or 
tracked with current XLTS algorithms, highlighting the need 
for enhanced detection techniques [13, 14]. To resolve this, 
six generative adversarial network (GAN) approaches for 
bone suppression imaging were implemented and compared. 
Unsupervised training often proves unstable due to multiple 
valid domain mappings, while cycle-consistent models fail to 
handle significant geometric alterations. To overcome these 
limitations, GANs integrating contrast and dual learning were 
employed, enabling high-quality transformations across dis-
tinct domains. This strategy enhances tumor visibility and 
tracking accuracy in complex cases, potentially exceeding the 
performance of existing systems.

In recent years, GANs have shown state-of-the-art perfor-
mance in many image-processing tasks  [15]. Within the 
domain of image-to-image conversion, there are two fun-
damental categories: supervised [16–18] and unsupervised 
learning [19–21]. Conditional GAN [22] and pix2pix [16] rely 
on paired data, while alternatives like Cycle-consistency GAN 
(CycleGAN) [23], DualGAN [19, 24], Contrastive Learning for 
Unpaired Image-to-Image Translation (CUT) [25], FastCUT 
[25], Dual Contrastive Learning GAN (DCLGAN) [26], and 
Simultaneous Dual Contrastive Learning (SimDCL) [26] 
do not. CycleGAN eliminates the need for paired training 
data, using a ResNet-based generator and a PatchGAN clas-
sifier. DualGAN, for asymmetric transformations, incorpo-
rates dual loss functions. CUT leverages partial contrastive 
learning for efficient image transformation, while FastCUT 
is a quicker iteration. DCLGAN, designed for unpaired data, 
addresses adversarial challenges with dual contrast learn-
ing, while SimDCL improves inversion performance. GANs 
also aid in computer-aided diagnosis by removing obstructive 
bone structures in lung imaging [27], as well as reducing ar-
tifacts in both computed tomography (CT) and cone beam CT 
scans [28–30].

We previously reported on image recognition through bone 
suppression imaging technology based on CycleGAN, en-
abling high-precision motion tracking irradiation [31]. While 
systems like CycleGAN demonstrate significant potential in 
image transformation, their inability to preserve geometric fi-
delity can undermine tumor tracking reliability, especially in 
complex cases with overlapping structures like bones. Models 
such as SimDCL, which prioritize both image quality and 
computational efficiency, offer a promising solution [32]. This 
study evaluates various GAN models with distinct algorithms 

to analyze differences in tumor detection performance based 
on image quality and generation time. By comparing these ad-
vanced models with traditional methods, it seeks to enhance 
tumor visibility during radiation therapy and improve the pre-
cision of real-time tracking.

2   |   Methods

Six pre-trained GAN models were employed to input origi-
nal images, generating bone suppressed images (BSIphantom). 
These BSIphantom images were subsequently compared with 
test data for validation. Next, BSIpatient were generated from 
the images used for the actual CK treatment, and the effective-
ness of deep learning was evaluated by template matching for 
each of the actual treatment images and BSIpatient. The work-
flow is illustrated in Figure 1. During training, key hyperpa-
rameters were set to optimize model performance. Table  1 
provides an overview of the selection criteria and features for 
each GAN model. Lr represents the learning rate, while ep-
ochs represent the number of epochs. The selection criteria 
highlight specific attributes considered when choosing each 
model. In conventional deep learning, a smaller loss generally 
indicates that the model is learning effectively. Typically, once 
the loss decreases to a certain threshold and plateaus, it is con-
sidered an appropriate point to terminate training. However, 
in GAN training, if one side's loss drops too quickly, it signi-
fies a failure in learning. In other words, the balance between 
the Generator and Discriminator losses is critical in GANs. In 
this study, we successfully adjusted this balance by modify-
ing the Discriminator network, such as reducing its size and 
increasing the use of dropout. The appropriate setting of these 
hyperparameters significantly influenced the quality of bone-
suppressed images generated by the GAN models, ensuring 
that outputs were accurate and clinically useful. This careful 
consideration ensures that the chosen GAN models meet tech-
nical requirements and provide a reliable solution for enhanc-
ing medical imaging applications.

2.1   |   Data

2.1.1   |   4D Extended Cardiac-Torso Phantom (XCAT 
Phantom) Images

We first created images from XCAT phantom (Duke University, 
Durham, North Carolina) [33, 34] for deep-learning datasets. 
The XCAT phantom, a digital anthropomorphic phantom 
image database, is based on the National Library of Medicine's 
human anatomy database. It uses non-uniform rational b-
spline surfaces and combines voxelized and mathematical ap-
proaches for realistic simulated imaging with detailed, flexible 
organs, allowing for anatomical variation and deformation 
[34–36]. Though positioned off-center, it mimics the rotation 
and shifts seen in patient CT images. We used 56 samples 
from this phantom, differing in age, sex, ethnicity, height, and 
weight. The dataset included 56 individuals aged 18–78 years, 
weight 52–120 kg, height 153–190 cm, and BMI 18–39 kg/m2. 
The dxcat2 code of XCATv2 software obtained images with 
and without bony structures, as shown in Figure 2a. Settings 
included a bone size parameter of one, pixel and slice width of 
0.03 cm, and an array size of 512 × 512.
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Next, to create 2D CK images, we used 3D Slicer software 
(version 4.11, MIT, Massachusetts, USA) to create 45° images, 
as shown in Figure  2b. Parameters included view-up vector 
(x,y,z) = (−1,0,45), normal vector (x,y,z) = (45,−45,0), and isocen-
ter position (x,y,z) = (0,0,0). These were divided into nine seg-
ments, as shown in Figure 2c. This process created 1120 images, 
of which 120 were used for testing. Optimal model performance, 
with reduced training loss, was observed when splitting training 
and testing sets on a per-patient basis, minimizing data leakage 
and allowing better generalization across patients.

2.1.2   |   Treatment Images

To evaluate the model, treatment images were obtained from 
50 patients with metastatic (tumor size 8–64 mm) and pri-
mary lung cancer (tumor size 10–62 mm) undergoing stereo-
tactic radiotherapy at our center between February 2020 and 
January 2022. Forty patients were male and 10 were female, 
aged 46–93 years (average age, 74.14). No specific selection 

criteria were applied to tumor types, resulting in a diverse 
mix of solid, part-solid, and ground-glass nodules (GGNs). 
Patients were consecutively selected based on their treatment 
schedules to mitigate selection bias and ensure a representa-
tive sample. Stereotactic radiotherapy using CK synchronous 
respiratory tracking technology was performed. All patients 
were treated with the CK system using 2-view XLTS. CK DRR 
images have 512 × 512 pixels with a pixel size of 0.4 mm and 
12-bit intensity values (stored as 16-bit integers, but the dy-
namic range is 12 bits).

2.2   |   Evaluation Methods

BSIphantom were compared to bone shadow-free images from the 
test data, and the similarity was calculated. To accurately assess 
the quality of images generated by models, quantitative evalua-
tion metrics are indispensable. Beyond subjective evaluation by 
human observers, it is crucial to implement objective methods 
for measuring image quality. Accurately gauging the quality of 

FIGURE 1    |    Work-flow of the bone suppression and evaluation framework. (a) Six pre-trained GAN models generated bone-suppressed images 
(BSIphantom) from original images, which were validated against test data. (b) BSIpatient images were then generated from actual CK treatment images, 
and detection effectiveness was evaluated using template matching.

TABLE 1    |    Selection process and hyperparameters of GAN models.

Models Selection criteria Lr Batch size Epochs

CycleGAN Bidirectional image translation for unpaired images using cycle consistency. 0.0005 2 400

DualGAN Bidirectional translation with two adversarial networks for unpaired data. 0.0001 4 400

CUT Efficient image translation with contrastive learning from unpaired data. 0.0002 3 400

Fastcut Faster image translation with contrastive learning at the patch level. 0.0002 5 400

DCLGAN Improved translation accuracy by applying contrastive learning bidirectionally. 0.0005 1 400

SimDCL Simple and efficient image translation with basic contrastive learning. 0.0006 1 400
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generated images remains a persistent challenge [37]. For in-
stance, quantitative metrics such as Frechet inception distance 
(FID) may not fully capture the realism or naturalness of the 
images [38, 39]. Therefore, it is recommended to combine these 
metrics with visual inspections and subjective evaluations for a 
more comprehensive assessment. We evaluated the models with 
three different objective image quality metrics, the structural 
similarity index measure (SSIM) [40], peak signal-to-noise ratio 
(PSNR) [41], and FID [42]. These evaluations were conducted 
individually for each image, as illustrated in Figure 1.

SSIM evaluates image quality based on structural information, 
as described by Equations (1) and (2). Equation (1) calculates the 
SSIM for each block, while Equation (2) computes the average 
SSIM across all blocks.

Here, x and y are the individual blocks of the reference and 
test images, respectively, and � is the average per block of the 
Gaussian filtered image. Similarly, �2 refers to the variance per 
block of the Gaussian filtered image: C1 and C2 are constants, 
(0.01×255)2 and (0.03×255)2, respectively. M is the number of 
blocks.

PSNR is an index obtained by the ratio of the mean squared 
errors (MSEs) of the reference image and the test image to the 
maximum grayscale value (PS = 255). The PSNR and MSE are 
shown in Equations (3) and (4), respectively.

Here, xi represents the reference image, yi represents the gray-
scale value of the test image, and N represents the total number 
of images.

(1)SSIM(x, y) =

(
2�x�y + C1

)(
2�xy + C2

)

(
�2x + �2y + C1

)(
�2x + �2y + C2

)

(2)MSSIM =
1

M

M∑

j=1

SSIM
(
xj, yj

)

(3)PSNR = 10 log10

(
PS2

MSE

)

(4)MSE =
1

N

N∑

1

(
xi−yi

)2

FIGURE 2    |    Creation of original images and bone shadow-free images generated from the XCAT phantom. (a) Original images (L)/bone shadow-
free images (R). (b) Pseudo-projecting the XCAT phantom. (c) Projected original images (L)/bone shadow-free images (R) as in (b) were divided into 
nine segments.
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FID is a quantitative metric that employs an inception net-
work to convert reference and test images into feature vectors, 
retaining their higher-dimensional information. By assum-
ing a Gaussian distribution for these feature vectors, the 
mean and covariance matrices are computed, as presented in 
Equation (5).

Here, � is the mean, Σ is the covariance, and Tr is the sum of the 
diagonal elements.

Next template matching was performed on each treatment 
image and BSIpatient to calculate the zero-mean normalized 
cross-correlation (ZNCC). In this study, the entire image served 
as the search area to capture the tumor contour. Template 
matching, a fundamental detection technique, identifies the 
target location by comparing the input image with a pre-defined 
template. ZNCC quantifies similarity by adjusting for lighting 
variations, with values ranging from −1 to 1, where 1 denotes a 
perfect match. After processing 1000 treatment images through 
the GAN to BSIpatient, template matching was applied to calcu-
late ZNCC.

As a preprocessing step, no alterations were made to the train-
ing, test, or treatment images; however, refinements, including 
noise reduction and adjustments for size and angle, were applied 
to enhance accuracy.

2.3   |   Statistical Analysis

All statistical analyses were performed using SPSS Statistics for 
Windows (version 27.0, IBM Corp., Armonk, NY). The results 
are reported as the mean ± SEM. Initially, the Shapiro–Wilk test 
was employed to evaluate the normality of the quantitative data. 
Given the non-normal distribution of the data, the Friedman test 
with the Bonferroni correction was utilized to analyze the depen-
dent data across six groups. Subsequently, the ZNCC between the 
BSIpatient and the actual treatment images (reference) was com-
pared, employing the Wilcoxon rank-sum test for significance 
testing. Differences were considered statistically significant at 
p < 0.05.

2.4   |   Computational Environment 
and Programming Language

The computational setup employed for this study comprised 
a CPU: Intel Core i7-10 700 clocked at 3.8GHz, GPU: NVIDIA 
GeForce RTX 2080 SUPER with 8GB of memory, and the pro-
gramming language Python version 3.9.18.

3   |   Results

Figure 3 highlights examples from the BSIphantom and BSIpatient, 
illustrating the comparison between bone shadow-free images 
and those generated by the models. Figure 3 includes difference 
images, showing the subtraction of bone shadow-free images 

from BSIphantom images. The removal of bone shadows was es-
sential for enhancing the clarity of tumor contours, which is 
particularly important for accurate stereotactic radiotherapy 
planning. After applying the GAN models, the bone intensities 
were significantly suppressed, while the tumor structures were 
preserved—an essential aspect for achieving successful radio-
therapy outcomes. The ability to maintain this balance between 
bone removal and tumor preservation is crucial for the clinical 
application of these models.

Table  2 and Figure  4 show the SSIM and PSNR values for the 
six GAN models. SSIM assesses the visual similarity between the 
generated and reference images, focusing on structural elements 
like luminance and contrast. A higher SSIM value indicates 
greater resemblance to the reference image, which is essential 
for preserving clinically relevant details after bone suppression. 
PSNR measures the ratio of signal to noise, reflecting image 
fidelity, with higher values signifying reduced noise and supe-
rior quality. The BSIphantom model exhibited the highest SSIM 
(0.96 ± 0.02) and PSNR (36.93 ± 3.93), indicating optimal image 
integrity preservation during bone shadow removal. These ele-
vated values suggest that BSIphantom generated images closely 
match the reference, retaining critical anatomical details. The 
significant differences observed among the six models (SSIM: 
H(5) = 448.10, PSNR: H(5) = 311.17, p < 0.05) further underscore 
the superior image quality of BSIphantom.

The evaluation of FID, a metric that assesses the quality of 
generated images by comparing their statistical similarity to 
reference images, provided valuable insights. FID considers 
the mean and covariance of feature vectors extracted from the 
images, offering a robust assessment of image quality within a 
GAN framework. Lower FID scores indicate better alignment 
between the generated and reference distributions, signifying 
more realistic images. Among the models, SimDCL achieved 
the lowest FID score (114.52 ± 32.60), demonstrating its ability 
to generate the most realistic bone-suppressed images. This re-
sult is crucial, as a low FID score enhances clinical applicability, 
with realistic imaging being vital for accurate tumor assessment 
and treatment planning. SimDCL demonstrated superior perfor-
mance in this regard, highlighting its potential to improve accu-
racy in clinical workflows.

Template matching between the generated BSIpatient images and 
actual treatment images was performed using ZNCC to quantify 
the similarity. ZNCC is a powerful metric for assessing how well 
two images align, particularly when comparing templates to re-
gions of interest, such as the tumor areas. A higher ZNCC value 
indicates better alignment, which is essential to ensure that 
the generated images can be reliably used in clinical settings. 
Table 3 shows that the CUT model achieves the highest ZNCC 
value (0.789 ± 0.159), demonstrating superior performance in 
aligning the generated images with real patient data. Significant 
differences (p < 0.05) were noted between the real patient im-
ages and those generated by several models (CycleGAN, CUT, 
FastCUT, DCLGAN, and SimDCL), indicating that these mod-
els effectively replicated the tumor's location and shape after 
bone suppression. This high ZNCC value is vital for clinical ap-
plications, where precise tumor localization is critical for treat-
ment targeting.

(5)FID = �����X−�Y
����
2
+ Tr

�
ΣX + ΣY − 2

√
ΣXΣY

�
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In addition to image quality, the speed of image generation is 
a critical factor, particularly in real-time clinical applications. 
Speed, measured in milliseconds per image (ms/image), in-
dicates the efficiency with which a model can produce bone 
shadow-free images. Rapid image generation is essential for 
real-time use, such as during treatment planning or intraoper-
ative procedures. The average generation speed across models 
was 94.7 ± 0.013 ms/image, demonstrating their ability to rap-
idly produce high-quality images. The ability of the models to 
generate images swiftly without compromising quality under-
scores their potential for clinical integration.

The clinical evaluation, encompassing 50 patients with metastatic 
and primary lung cancer, emphasized the practical relevance of 
the findings. The variability in tumor size (8–64 mm) and location 
(central and peripheral) poses challenges for image generation 

models. Additionally, respiratory motion (2–20 mm) further com-
plicates the process, as tumors shift during imaging, hindering ac-
curate bone shadow suppression. The models' capacity to adapt to 
these dynamic conditions is crucial for their clinical applicability. 
Precise tumor alignment and visualization are vital for effective 
radiotherapy, especially for tumors in regions affected by signifi-
cant respiratory motion. The strong performance of models such 
as SimDCL under these conditions demonstrates their potential to 
improve treatment accuracy and patient outcomes.

4   |   Discussion

The precision in identifying tumors and the robustness of 
the system are influenced by the confluence of tumors and 
bone shadows in TLS. We advocated the utilization of GANs 

TABLE 2    |    Objective image quality index between bone shadow-free images and BSIphantom.

Metrics CycleGAN DualGAN CUT FastCUT DCLGAN SimDCL

SSIM 0.90 ± 0.06 0.90 ± 0.01 0.95 ± 0.02 0.95 ± 0.03 0.96 ± 0.02 0.96 ± 0.02

PSNR 31.54 ± 4.48 30.94 ± 2.22 33.94 ± 3.08 35.83 ± 3.00 33.43 ± 3.12 36.93 ± 3.93

FID 119.45 ± 59.28 193.45 ± 55.10 179.92 ± 49.45 173.23 ± 43.14 141.26 ± 38.09 114.52 ± 32.60

Note: The Friedman test was employed to evaluate the differences in metrics among the six sets of images; Figure 4 presents the detailed comparisons between each 
model.

FIGURE 3    |    Examples between the test data and BSI. In the first column from the left, the original XCAT phantom images are shown at the 
top, with the bone shadow-free images directly adjacent. The second row consists of subtraction images between the bone shadow-free images and 
BSIphantom. While these subtraction images are essential for visualizing the differences, it can be difficult to clearly interpret them due to visibility 
issues. Therefore, contrast adjustments were applied to improve the visual representation of differences. The middle row contains magnified sec-
tions of the original images, while the fourth row illustrates the subtraction images corresponding to these magnified sections, again comparing the 
bone shadow-free images with BSIphantom. The bottom row showcases BSIpatient, highlighting the results generated through various methodologies. 
Additionally, the blue line in the treatment images denotes the tumor tracking volume (TTV). All images were adjusted to the window level 30/win-
dow width 330. All images were adjusted to the window level 30/window width 330.
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to acquire the proficiency to attenuate the intensity of bone 
shadows on TLS. Experimental evaluations conducted on 
the XCAT phantom datasets substantiated the efficacy of the 
framework developed for this purpose. Furthermore, our re-
search evolved from the antecedent CycleGAN methodology, 
proffering solutions to dilemmas arising from the intersection 
of bone shadows and tumors, as well as challenges associated 
with image generation speed, through a comparative explora-
tion of various GANs.

Unlike previous studies, Bae et al. explored the comparative ef-
ficacy of deep learning-based bone suppression and dual-energy 
bone subtraction for pulmonary nodule detection, highlight-
ing the critical role of bone suppression techniques [43]. Their 
findings demonstrated significant improvements in nodule 
detection, particularly when nodules overlapped with osseous 
structures. This aligns with our findings, where models like 
SimDCL effectively suppressed bone shadows while preserving 
tumor architecture, despite our primary focus on radiotherapy 
rather than pulmonary imaging. Similarly, the SFRM-GAN 
developed by Rani et  al. for bone suppression in chest radio-
graphs shares parallels with our work [44]. By incorporating ad-
vanced loss functions, including Sobel and Perceptual loss, their 
model outperformed conventional methods in PSNR and SSIM, 
demonstrating the strengths of GANs in image denoising and 
quality preservation. Our study corroborates this, with SimDCL 
achieving superior SSIM (0.96 ± 0.02) and PSNR (36.93 ± 3.93), 

underscoring the potential of GAN-based approaches in med-
ical imaging.

A key distinction lies in the clinical focus. While Bae et al. and 
Rani et al. emphasized chest radiography for nodule detection, 
our research targeted enhanced tumor localization for radio-
therapy by removing bone shadows that obscure tumor bound-
aries. The superior SSIM and PSNR values observed confirm the 
efficacy of our GAN models in improving tumor visualization 
for treatment planning.

Existing methods struggle with tumor detection due to re-
duced visibility when tumors overlap with bony structures, 
degrading image quality. This study demonstrates that effec-
tive bone suppression preserves tumor contours and improves 
depiction accuracy by minimizing bone shadows. However, 
GAN-based methods face challenges in reducing bone inten-
sity and suffer from inherent training instability, including 
mode collapse, parameter divergence, and gradient vanish-
ing. CUT addresses mode collapse and missing pixel issues 
through unsupervised learning, but DCLGAN improves 
upon this by maximizing mutual information and integrating 
CycleGAN with CUT. SimDCL further enhances performance 
by adding similarity loss, producing distinct and accurate out-
puts across various inputs. Han et al. showed that both CUT 
and DCLGAN produced nearly identical outputs regardless 
of input, whereas SimDCL generated distinct and accurate 

FIGURE 4    |    SSIM, PSNR, and FID metrics of the generated images from various GAN models. These metrics are illustrated through box plots 
for each model. In these plots, the central line denotes the median, while the upper and lower edges of the box signify the third (Q3) and first (Q1) 
quartiles, respectively. The whiskers extend to the minimum and maximum data points within 1.5 times the interquartile range (IQR) from Q1 and 
Q3, with any data points outside this range identified as outliers and marked individually. At the top of each plot, bars illustrate multiple model 
comparisons, with statistical significance indicated by *** for p < 0.001, ** for p < 0.01, * for p < 0.05, and “ns” for non-significant results. This visual 
representation facilitates a clear comparison of the performance variations among the GAN models.
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outputs for varying inputs [26]. Additionally, SimDCL consis-
tently delivered high-quality images, demonstrating its poten-
tial for automated brain MRI segmentation [45]. Table 2 and 
Figure 4 show the model's superiority, with SimDCL generat-
ing images that closely approximate reference images while 
mitigating mode collapse.

The ability of models like SimDCL to suppress bone shadows 
while preserving tumor structure integrity carries significant 
clinical relevance, particularly in radiotherapy planning. Precise 
tumor localization is crucial to ensure accurate radiation deliv-
ery and minimize damage to surrounding healthy tissues. The 
elevated SSIM and PSNR values observed in this study confirm 
that these models effectively preserve critical anatomical fea-
tures, making them suitable for clinical use.

Furthermore, the low FID score of SimDCL (114.52 ± 32.60), 
indicating a high degree of realism in generated images, en-
hances its clinical utility. Realistic images are essential for 
radiologists and oncologists to accurately delineate tumor 
boundaries. The performance of CUT in template matching, 
demonstrated by a ZNCC value of 0.789 ± 0.159, further un-
derscores its potential for real-time tumor localization, par-
ticularly in image-guided radiotherapy, where precision is 
paramount.

Figure  5 highlights certain instances where detection proved 
challenging, a phenomenon likely arising from the diverse clini-
cal scenarios encountered during the study. Tumor variability in 
size, location, and respiratory motion emerged as pivotal factors 
affecting the accuracy and efficacy of bone-suppressed image 
generation. These variations complicate the alignment between 
the region of interest and the template image, thereby impeding 
consistent and precise detection.

As shown in Table 3, CUT achieved the highest tumor iden-
tification accuracy. However, the lack of correlation between 
ZNCC values in Table  3 and the image quality metrics in 
Table 2 can be explained by several factors. Template match-
ing relies heavily on template images, yet discrepancies in size, 
brightness, and contrast within the regions of interest can lead 
to significant deviations in detection outcomes, complicat-
ing the evaluation through metrics such as ZNCC. Oh et  al. 
demonstrated that integrating Haar 2D wavelet decomposition 
with adversarial training yields superior outcomes, as a con-
volutional autoencoder incorporating wavelet decomposition 
generates images with diminished sharpness and contrast, 
thereby augmenting the model's overall performance [46]. 
While high ZNCC values indicate strong alignment with tem-
plates, they do not consistently align with superior perceptual 
image quality, as reflected in Table 2. This divergence arises 
because ZNCC is highly sensitive to minor content variations, 
whereas the comprehensive perceptual metrics in Table 2 eval-
uate broader image quality attributes. Consequently, despite 
SimDCL achieving optimal image quality, its tumor identifi-
cation accuracy was inferior to that of CUT, which excelled in 
detection precision.

Additionally, common techniques in template matching in-
volve utilizing residuals or normalized correlation as evalua-
tion criteria. However, these methods face challenges related to T
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misidentification stemming from changes in the image environ-
ment, and no definitive approach has been proposed. Common 
methods to prevent misidentification include normalized cor-
relation [47], which eliminates image amplitude and offset, and 
incremental phase correlation [48], which matches based on the 
congruence of signs.

Despite the promising outcomes, this study has notable limita-
tions. First, the models were assessed using phantom datasets, 
which may not entirely reflect the complexity inherent in clinical 
cases. These synthetic datasets lack the variability and noise char-
acteristic of real-world clinical data, thereby potentially inflating 
the perceived efficacy of the models. Future investigations should 
utilize larger, more heterogeneous clinical datasets to more accu-
rately gauge the models' generalizability.

A further limitation pertains to the absence of explicit tumor 
selection criteria, particularly in challenging scenarios such as 
GGNs. In the absence of well-defined criteria, comparing the 
performance of the models across various tumor types becomes 
problematic. Future studies should ensure the inclusion of a 
broad spectrum of tumor types, including GGNs, to facilitate a 
more thorough and representative evaluation.

Moreover, while SSIM and PSNR are valuable for assessing 
image quality, they fail to directly measure the accuracy of 
tumor detection. The inconsistent correlation with ZNCC indi-
cates that the models may face challenges in tumor detection, 
particularly under varying conditions such as tumor size, loca-
tion, and respiratory motion. It is essential that future research 
incorporates more appropriate metrics, such as the dice similar-
ity coefficient, to provide a more precise assessment of detection 
performance.

Additionally, the study did not sufficiently account for the influ-
ence of respiratory motion, a factor that can significantly impact 
both image quality and detection accuracy in clinical practice. 
Future investigations should explore how respiratory motion af-
fects model performance, as this is critical for the applicability of 
these models in real-time clinical environments.

Finally, the study occasionally demonstrated inadequate noise 
suppression, leading to failures in tumor identification. Enhanced 
noise reduction techniques, coupled with clinically relevant met-
rics such as the dice similarity coefficient, are essential for im-
proving the reliability of tumor detection in noisy images.

5   |   Conclusion

This study presents a GAN-based method for bone suppression 
in fluoroscopic tumor images, enhancing tumor localization for 
radiotherapy while preserving image quality. These findings con-
tribute to the growing body of research on GAN-based bone sup-
pression in medical imaging. However, challenges persist, notably 
the need to improve model robustness in clinical settings with 
variable respiratory motion. Expanding the evaluation to include 
clinical datasets is essential for validating these findings.

Future research should focus on integrating our models into 
real-time radiotherapy workflows, aiming to further improve 
the precision and efficacy of cancer treatment and ultimately 
enhance patient outcomes. Our findings advance the field of 
medical imaging and pave the way for innovative applications of 
machine learning in clinical practice. 
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